Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

3-(p-Chlorophenyl)-4-phenyl-4,5-di-hydroisoxazole-5-spiro- $2^{\prime}-1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$ -tetrahydronaphthalen- $\mathbf{1}^{\prime}$-one

A. Subbiah Pandi, ${ }^{\text {a }}$ S. Banumathi, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$ * S. Shanmuga Sundara Raj, ${ }^{\text {b }}$ Hoong-Kun Fun ${ }^{\text {b }}$ and S. Manikandan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b } X \text {-ray Crystallographic Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c }}$ Department Of Organic Chemistry, University Of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: d_velu@yahoo.com

Received 20 November 2000
Accepted 1 March 2001
In the title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClNO}_{2}$, the phenyl ring and the tetralone moiety are approximately orthogonal to the isoxazoline ring. The isoxazoline ring adopts an envelope conformation, while the cyclohexenone ring of the tetralone moiety has an intermediate sofa/half-chair conformation. In this structure, one $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular and two $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds occur; the $\mathrm{H} \cdots A$ distances are 2.60 , and 2.35 and $2.57 \AA$, respectively. The molecules are held together by an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, forming a one-dimensional chain along the [100] direction.

Comment

Isoxazoline derivatives have been used in many naturalproduct syntheses and have also proved to be efficient precursors for many synthetic intermediates, including γ-amino alcohols, β-hydroxy ketones, etc. (Kozikowski, 1984; Kanemasa \& Tsuge, 1990). Spiro-isoxazoline compounds display interesting biological properties, such as herbicidal,

(I)
plant-growth regulatory and antitumour activities (Howe \& Shelton, 1990; De Amici et al., 1990; Smietana et al., 1999). We report here the structure of 3-(p-chlorophenyl)-4-phenyl-4,5-dihydroisoxazole-5-spiro- $2^{\prime}-1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydronaphthalen-1'-one, (I).

The structure of (I) (Fig. 1) consists of an isoxazoline ring (A) connected to a p-chlorophenyl ring (B) at C 2 , a phenyl ring (C) at C3 and a tetralone moiety $[D$ (cyclohexenone) and E (phenyl)] at C 1 . Rings A and B are approximately coplanar, forming a dihedral angle of $1.2(1)^{\circ}$. Phenyl ring C and tetralone ring D are approximately orthogonal to ring A, forming dihedral angles of 77.5 (1) and 88.5 (1) ${ }^{\circ}$, respectively. There is a slight folding of rings D and E of the tetralone substituent, the rings forming a dihedral angle of $4.9(1)^{\circ}$ with one another.

The bond lengths $\mathrm{O} 1-\mathrm{N} 1$ and $\mathrm{N} 1=\mathrm{C} 2$, and the angles $\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 2$ in ring A are comparable with the corresponding values of two other structures (Mackay et al., 1994; Pereira et al., 1993). Also, bond lengths Cl1-C16 and $\mathrm{C} 12=\mathrm{O} 2$ are in good agreement with the values found in the literature (Allen et al., 1987). Selected bond lengths and angles are given in Table 1.

The puckering (Cremer \& Pople, 1975) and asymmetry parameters (Nardelli, 1983a) calculated for ring D are $Q_{T}=$ $0.450(4) \AA, \Delta C_{s}(\mathrm{C} 4)=0.052(2)^{\circ}$ and $\Delta C_{2}(\mathrm{C} 1-\mathrm{C} 4)=$ $0.060(2)^{\circ}$, and for ring A are $Q_{T}=0.146(4) \AA$ and $\Delta C_{s}(\mathrm{C} 1)=$ $0.003(2)^{\circ}$, which correspond to an intermediate sofa/halfchair conformation for ring D and an envelope conformation for ring A.

The N atom of ring A is involved in a $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bond. The O atom of ring A and the carbonyl O atom of ring D are involved in two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ short contacts (Table 2). The $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$ and $\mathrm{C} 5-$

Figure 1
The molecular structure of the title compound (ZORTEP; Zsolnai, 1997) shown with 50% probability displacement ellipsoids. H atoms are displayed as small circles of arbitrary radii.
$\mathrm{H} 5 A \cdots \mathrm{O} 1$ intramolecular interactions are a result of the configurations at C 3 and C 1 , respectively, while the intermolecular $\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{~N} 1^{\mathrm{i}}$ interaction joins the molecules in chains running along the [100] direction [symmetry code: (i) $1+x, y, z]$.

Experimental

To a well stirred solution of 2-arylidine-1-tetralone (3 mmol) in CHCl_{3} (10 ml), N - p-chlorobenzhydroxyiminoyl chloride was added (3 mmol), followed by 3.3 mmol of triethylamine. The reaction was monitored via thin-layer chromatography until the starting material had disappeared, and was then quenched with water, extracted with CHCl_{3}, dried with anhydrous MgSO_{4}, column chromatographed using hexane/ethyl acetate (4:1) and recrystallized from hexane/ethyl acetate (3:1).

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClNO}_{2}$
$M_{r}=387.84$
Triclinic, $P \overline{1}$
$a=9.2559$ (8) \AA 。
$b=10.9527$ (9) A
$c=11.6466$ (10) A
$\alpha=62.867(2)^{\circ}$
$\beta=71.010(2)^{\circ}$
$\gamma=78.653$ (2) ${ }^{\circ}$
$V=991.93(15) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.299 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2150 \\
& \text { reflections } \\
& \theta=2.9-25.0^{\circ} \\
& \mu=0.21 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Rectangular, colourless } \\
& 0.42 \times 0.16 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection
Siemens SMART CCD area-

$$
R_{\mathrm{int}}=0.027
$$

$$
\theta_{\max }=25.0^{\circ}
$$

5316 measured reflections

$$
h=-10 \rightarrow 10
$$

$$
k=-11 \rightarrow 13
$$

3387 independent reflections
2158 reflections with $I>2 \sigma(I)$

$$
l=-10 \rightarrow 13
$$

$$
\text { Intensity decay: } 1 \%
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.191$
$S=1.03$
3387 reflections
254 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 16$	$1.741(4)$	$\mathrm{O} 2-\mathrm{C} 12$	$1.218(4)$
$\mathrm{O} 1-\mathrm{N} 1$	$1.407(3)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.281(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.459(4)$		
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1$	$108.8(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 13$	$119.7(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{O} 1$	$110.0(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.0(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	$107.3(3)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 11$	$122.4(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3$	$105.2(2)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 1$	$120.1(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 12$	$103.5(2)$		

Table 2
Hydrogen-bonding and short-contact geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5A $\cdots \mathrm{O} 1$	0.97	2.57	$2.831(6)$	95
C3-H3 \cdots O2	0.98	2.35	$2.777(4)$	105
C22-H22 ${ }^{\mathrm{i}} \mathrm{N}^{\mathrm{i}}$	0.93	2.60	$3.531(5)$	175

Symmetry code: (i) $1+x, y, z$.

DV thanks UGC (India) for providing funding under a major project grant.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1498). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
De Amici, M., De Micheli, C. \& Misani, V. (1990). Tetrahedron, 46, 1975-1986.
Howe, R. K. \& Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.
Kanemasa, S. \& Tsuge, O. (1990). Heterocycles, 30, 719-736.
Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410-416.
Mackay, M. F., Savage, G. P. \& Simpson, G. W. (1994). Acta Cryst. C50, 17721774.

Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Pereira, S. M., Savage, G. P., Simpson, G. W., Greenwood, R. J. \& Mackay, M. F. (1993). Aust. J. Chem. 46, 1401-1412.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instuments Inc., Madison, Wisconsin, USA.
Smietana, M., Gouverneur, V. \& Mioskowski, C. (1999). Tetrahedron Lett. 40, 1291-1294.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

